
www.manaraa.com

Resting-state activity in development and maintenance
of normal brain function
Carolyn E. Pizolia,1, Manish N. Shahb,1, Abraham Z. Snyderc,d, Joshua S. Shimonyd, David D. Limbrickb,
Marcus E. Raichlec,d,e,f,1, Bradley L. Schlaggarc,d,f,g, and Matthew D. Smythb

aDepartment of Pediatrics, Duke University Medical Center, Durham, NC 27110; and Departments of bNeurological Surgery, cNeurology, dRadiology,
eBiomedical Engineering, fAnatomy and Neurobiology, and gPediatrics, Washington University School of Medicine, St. Louis, MO 63110

Contributed by Marcus E. Raichle, June 6, 2011 (sent for review March 1, 2011)

One of the most intriguing recent discoveries concerning brain
function is that intrinsic neuronal activity manifests as spontaneous
fluctuations of the blood oxygen level–dependent (BOLD) functional
MRI signal. These BOLD fluctuations exhibit temporal synchrony
within widely distributed brain regions known as resting-state net-
works. Resting-state networks are present in the waking state, dur-
ing sleep, and under general anesthesia, suggesting that sponta-
neous neuronal activity plays a fundamental role in brain function.
Despite its ubiquitous presence, the physiological role of correlated,
spontaneous neuronal activity remains poorly understood. One hy-
pothesis is that this activity is critical for the development of synap-
tic connections and maintenance of synaptic homeostasis. We had
a unique opportunity to test this hypothesis in a 5-y-old boy with
severe epileptic encephalopathy. The child developed marked neu-
rologic dysfunction in association with a seizure disorder, resulting
in a 1-y period of behavioral regression and progressive loss of de-
velopmental milestones. His EEG showed a markedly abnormal pat-
tern of high-amplitude, disorganized slow activity with frequent
generalized and multifocal epileptiform discharges. Resting-state
functional connectivity MRI showed reduced BOLD fluctuations
and a pervasive lack of normal connectivity. The child underwent
successful corpus callosotomy surgery for treatment of drop seiz-
ures. Postoperatively, the patient’s behavior returned to baseline,
and he resumed development of new skills. The waking EEG re-
vealed a normal background, and functional connectivity MRI dem-
onstrated restoration of functional connectivity architecture. These
results provide evidence that intrinsic, coherent neuronal signaling
may be essential to the development and maintenance of the
brain’s functional organization.

developmental neuroimaging | epilepsy

It has been known since the advent of functional MRI (fMRI)
that the blood oxygen level–dependent (BOLD) signal exhibits

slow (nominally, <0.1 Hz) spontaneous fluctuations (1). These
fluctuations were initially regarded as noise in the context of
task-related fMRI. However, in 1995 it was shown that these
fluctuations are temporally coherent within widely distributed
regions that recapitulate the topography of fMRI responses in-
duced by performance of typical sensory, motor, and cognitive
tasks (2, 3). This phenomenon is known as functional connec-
tivity. Because functional connectivity is most easily demonstrated
in quietly resting humans, the associated spatial topographies are
now widely known as resting-state networks (RSNs) (3–5).
RSNs have been demonstrated in all animal species examined

so far (6–8). They are present in rudimentary form early in hu-
man life (9–11) and later reorganize as brain development pro-
ceeds through childhood (12–15). RSNs persist, albeit in somewhat
modified form, during task performance (16), sleep (17, 18), and
even under sedation (7, 19, 20). Thus, RSNs normally represent
a remarkably robust phenomenon.
Little is known about the physiological functions represented

by RSNs, however. The available evidence suggests that RSNs
reflect slow, synchronous, spontaneous fluctuations of spatially
organized neural signaling (21–24). This signaling is energetically
expensive (25, 26), implying that it must serve critical functions.

It has been suggested, in very broad terms, that these functions
maintain the brain’s integrity and increase its capacity to deal
effectively with future exigencies (26–28); however, this per-
spective remains entirely theoretical. In addition to maintaining
network integrity, the spontaneous neuronal signaling repre-
sented by RSNs also may be involved in the construction or
development of neural networks (9, 29, 30). This case report
provides evidence supporting the view that RSNs represent
physiological processes critical to the development and mainte-
nance of the brain’s functional integrity.

Case Report
The patient is a 5-y-old boy with epileptic encephalopathy (EE)
presenting as frequent mixed seizure types, characteristic EEG
abnormalities, and developmental regression, collectively known
as Lennox–Gastaut syndrome (LGS) (31). Birth was complicated
by twin gestation and delivery at 35 wk gestational age. The
neonatal course was uncomplicated, and early development was
notable only for mild expressive speech delay. Atypical absence,
atonic drop, and generalized tonic-clonic seizures began around
age 4 y. Over the next year, the frequency of drop seizures in-
creased progressively (to 5–20/d), accompanied by regression of
language skills, toilet training, and social behavior. Multiple
courses of antiepileptic drugs failed to control the seizures.
Neuropsychological testing with a combination of child tests
and parent questionnaires (32–34) revealed abnormal behavior.
Structural MRI findings were normal (Fig. 1A). EEG was
markedly abnormal, with absence of an age-appropriate poste-
rior dominant rhythm (35, 36), variable amplitude delta/theta
slowing, frequent generalized slow (2–3 Hz) spike-and-wave dis-
charges, and multifocal spikes (Fig. 1C).
After evaluation by the multidisciplinary epilepsy team, the

patient underwent anterior two-thirds corpus callosotomy for
treatment of drop attacks (Fig. 1B). There were no complica-
tions. Postoperatively, there was a nearly complete remission of
all seizure types (37, 38). Remarkably, cognitive development
resumed in all areas, including language skills, toilet training,
and social behavior. EEG recorded at 4 mo after surgery showed
striking improvement; an age-appropriate continuous 8-Hz pos-
terior dominant rhythm was present, and the disorganized back-
ground slowing was completely resolved (Fig. 1D). At 6 mo,
formal neuropsychological testing revealed little change relative
to the preoperative baseline, but at school, the patient was able
to function in a mainstream classroom on a half-day basis.
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Results
Seed-Based Functional Connectivity. The preoperative correlation
maps corresponding to all seed regions were largely devoid of
recognizable RSN architecture and instead were dominated by
features attributable to correlated noise in blood vessels, white
matter, and cerebrospinal fluid (CSF) (Fig. 2, Middle). Post-
operatively, the correlation maps differed dramatically, with fea-
tures predominantly in gray matter with age-appropriate structure
evident in multiple RSNs (Fig. 2, Right); see SI Text for additional
illustrative results, including postoperative restoration of normal
RSN architecture within the default mode network. Comparable
preoperative vs. postoperative functional connectivity MRI (fcMRI)
results also were obtained using spatial independent component
analysis (30 components). Homotopic functional connectivity in the
postoperative results (i.e., right hemisphere correlations contralat-
eral to left hemisphere seeds) was variable and a clear result of
the corpus callosotomy (Fig. 2).

BOLD Signal Fluctuation Variance. The remarkable postoperative
improvement in functional connectivity raised the question of
whether the preoperative findings were attributable to an excess
of noise or to a lack of signal. To investigate this question, we
examined BOLD signal SDs at the level of both voxels and
regions of interest (ROIs). The preoperative SD maps showed
signal variance predominantly in CSF and vascular spaces (Fig.
3A); in contrast, the postoperative SD map showed BOLD signal
fluctuations mostly in gray matter (Fig. 3B). Quantitative results
were obtained for the 46 canonical ROIs listed in SI Text (all in
gray matter). The preoperative BOLD signal SD averaged over
all ROIs was less than the postoperative value by a factor of ∼2
(SI Text). Thus, the preoperative RSN abnormalities can be
interpreted as a lack of signal rather than an excess of noise.

Pairwise ROI–ROI Correlations and Covariances. Preoperative and
postoperative BOLD signal ROI pair correlation and covariance
matrices are shown in Fig. 4. The ROIs are ordered according to
functional system (SI Text) to facilitate visualization of coherent,
spontaneous BOLD fluctuations within RSNs. Coherent resting-
state BOLD fluctuations within and across functional systems are
evident in the block structure of the postoperative results (Fig.
4). The preoperative results are much less well organized. Im-
portantly, the preoperative vs. postoperative change in functional
connectivity is most apparent in Fig. 4 C and D, which shows
ROI–ROI covariance. Unlike correlation, covariance reflects

signal pair magnitudes as well as temporal coherence (SI Text,
Mathematical Note). Comparison of Fig. 4 A–C versus B–D
illustrates the fundamental fMRI findings in this case, specifically
reversibly suppressed spontaneous BOLD fluctuations; this ef-
fect is most evident along the matrix diagonals in C and D.

Discussion
EEG and fMRI in the Study of Childhood-Onset EE. EE is a large
umbrella category of childhood epilepsy that includes many
distinct clinical entities, such as West syndrome and LGS, that
themselves may be secondary to a variety of pathophysiologies
(39). Suppression of BOLD RSNs is not recognized as a constant
or even common feature of EE. There have been few fMRI
studies in this patient population. Three previous studies were
based on simultaneous EEG and fMRI recordings without in-
vestigation of resting-state functional connectivity (40–42). One
study of very young children with hypsarrythmia found pre-
dominantly positive BOLD responses to EEG epileptiform
events and delta range slowing with highly variable localization
(42). In contrast, predominantly negative BOLD responses in
regions within the default mode network were observed during
bilaterally synchronous EEG spikes in children with continuous
spikes and waves during slow sleep (40, 41).
Although there is no characteristic EEG feature of EE that is

most closely associated with clinical disability (43), there is gen-
eral agreement that early successful medical or surgical treat-

Fig. 1. Structural MRI (midline sagittal T1-weighted MP-RAGE) and EEG. (A)
Preoperative MRI shows normal structure. (B) Postoperative MRI (on post-
operative day 1) shows the extent of the anterior two-thirds corpus callos-
otomy. Widening of the interhemispheric fissure, a common postoperative
finding, also is evident. (C) Waking EEG (10 μV/mm, 1 s spacing) recorded 6
mo preoperatively using a standard (“double banana”) bipolar montage.
The record is severely abnormal (see text). (D) Normal waking EEG recorded
4 mo postoperatively. “L,” “R,” and “C” denote left, right, and central deri-
vations. The montage, time, and amplitude scales are identical in C and D.

Fig. 2. Selected seed-based correlation maps. Columns show the seeds
(Left), preoperative maps (Middle), and postoperative maps (Right). The map
quantity illustrated is the Fisher z-transformed correlation coefficient
thresholded at ± 0.2. (A) Left somatomotor cortex seed (−39 −26 51);
somatomotor RSN. (B) Left posterior cingulate/precuneus seed (−4 −40 43);
default mode network (DMN). (C) Visual cortex seed (−20 −75 12). (D) Au-
ditory cortex seed (−50 −25 8). (E) Left inferior frontal gyrus seed (−48 −13
31); speech. (F) Left intraparietal sulcus seed (−24 −69 30); dorsal attention
network. Note the marked improvement in RSN organization in the post-
operative maps vs. the preoperative maps.
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ment is associated with improved developmental outcome (44–47);
see SI Text for more discussion of this. Thus, EE appears to be
injurious, but the mechanism of injury remains uncertain.

Effects of Corpus Callosotomy on Resting-State Functional Connec-
tivity. The corpus callosum is largely responsible for spread of
seizures across themidline (48).Anterior callosotomy is performed
to sever connections supporting seizure generalization while con-
serving posterior fibers that carry perceptual information. Pre-
viously reported postcallosotomy EEG changes include improved
background organization and reduced bisynchronous epilepti-
form discharges (49), as seen in our patient.
We previously described resting-state functional connectivity

in a 6-y-old child with atonic-myoclonic epilepsy who underwent
complete callosotomy, with the main point of that report being
the nearly complete loss of interhemispheric functional con-
nectivity in the immediate postoperative period (50). That child

differed from the current patient in several respects, with less
severe preoperative EEG abnormalities (presence of a 7-Hz
posterior dominant rhythm and lack of epileptiform activity in
the waking record) and preoperative fMRI showing normal
RSNs. In contrast, Uddin et al. (51) described essentially normal
interhemispheric functional connectivity in a 74-y-old woman
with a remote history (more than 4 decades antecedent) of
complete callosotomy. The variable extent of postoperative in-
terhemispheric functional connectivity in our patient most likely
reflects preservation of the posterior third of the corpus cal-
losum. However, we note that the intraparietal sulcus regions
did not show homotopic functional connectivity (Fig. 2F), even
though the callosal connections of these regions likely were
spared. All of these callosotomy cases underscore the point that
the relationship between anatomic (axonal) connectivity and
functional connectivity (BOLD signal correlation) is compli-
cated, as well as subject to change over time (7, 52–57).

Fig. 3. Voxel-wise SD maps. (A) Preoperative results. High signal variation is seenprimarily in vascular andCSF spaces. (B) Postoperative results.High signal variation
is seen primarily in gray matter.

Fig. 4. Correlation and covariance matrices corresponding to 46 ROIs taken pairwise. The ROIs are ordered according to functional networks delineated by
brackets and depicted on the right; see SI Text for details. (A) Preoperative correlation. (B) Postoperative correlation. (C) Preoperative covariance. (D)
Postoperative covariance. Note the improved RSN organization evident in the block structure of the postoperative results, especially comparing C and D. The
diagonals in D and B show a pronounced postoperative increase in BOLD signal variance.

11640 | www.pnas.org/cgi/doi/10.1073/pnas.1109144108 Pizoli et al.
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Suppressed Resting-State Activity. A major finding in the present
case is the association of EE, including archetypical clinical and
electroencephalographic features, with suppressed spontaneous
BOLD fluctuations. Thus, it appears that resting-state BOLD
fluctuations of insufficient magnitude may constitute an abnor-
mality. Data defining the range of normal magnitudes in this
clinical population are scanty. To evaluate the degree of abnor-
mality in the present case, we computed resting-state regional
BOLD signal SDs in a cohort of comparable neurosurgical
patients using the same 46 ROIs illustrated in Fig. 4. Our patient’s
preoperative resting-state BOLD mean SD was lower than that of
all patients in the comparison cohort (70 datasets acquired in 43
patients) (SI Text). Postoperatively, the patient’s mean SD was at
the lower end of the range in the comparison cohort.
Several groups have reported focally reduced amplitude of low-

frequency BOLD fluctuations in various neuropsychiatric con-
ditions (54, 58, 59). It is highly likely that these effects are related
to the RSN changes associated with many degenerative and
psychiatric diseases (for reviews see refs. 60–62). Unlike in the
present case, previously reported amplitudes of low-frequency
BOLD fluctuation effects were focal and often verged on statis-
tical significance. To the best of our knowledge, the observation
of globally suppressed spontaneous BOLD fluctuations is novel.
The degree to which suppression of BOLD RSNs corresponds

to clinical severity in EE, and more specifically to behavioral
regression, is an important question. 18F-fluorodeoxyglucose
(FDG)-PET measurements of the cerebral metabolic rate of
glucose (CMRglu) are pertinent to this question. Specifically,
Chugani and coworkers (63, 64) defined four categories of LGS
according to the level of suppressed glucose metabolism in
a small cohort of these patients. Almost all of the patients had
some degree of cognitive impairment, but a normal CMRglu was
correlated with better intellectual function. The authors found
no correlation between local CMRglu and duration or frequency
of seizures. Other studies have suggested that static encepha-
lopathy in this population may correlate with reduced CMRglu
(65, 66). FDG-PET studies have indicated that glucose hypo-
metabolism (focal as well as global) generally reverses after
successful treatment of EE (66, 67), which is parallel to the
present case. It is important to recognize that glucose metabo-
lism is central to numerous processes apart from energy pro-
duction that are linked to cellular survival (68). Thus, depressed
CMRglu can be directly related to disrupted development in
children with EE.
In our present data, the amplitude of resting-state BOLD

fluctuations, as assessed by the SD measure, was lower in the
children who underwent callosotomy, all of whom had drop
seizures (a correlate of which is cognitive impairment), com-
pared with patients with other conditions, including temporal
lobe epilepsy and focal dysplasia (SI Text). There exist suggestive
data supporting the notion that suppressed resting-state activity
correlates with behavioral impairment. Investigating this ques-
tion is difficult because sedation, which almost invariably must be
administered to enable measurement, itself has an effect on
measured BOLD SD (SI Text). Moreover, some patients with EE
have preexisting static impairments, such as cerebral palsy and
structural abnormalities, that complicate the question of what
can be attributed to suppressed brain activity in these cases. But
this complication does not apply in the present case, given that
the child was clinically nearly normal until the onset of LGS.

Implications Related to the Physiological Significance of Resting-
State BOLD Fluctuations. RSNs are plastic and reorganize in re-
sponse to altered sensory input, as in early-onset blindness sec-
ondary to retinal injury (69). RSNs reorganize after vascular brain
injury in parallel with recovery of function (70). In normal vol-
unteers, RSNs can be manipulated experimentally by intensive
perceptual training or simply by recent performance of cognitive
tasks (71, 72). These results demonstrate that RSNs are sculpted
by experience and are consistent with the notion that ongoing
neuronal activity plays a role in recovery of function after injury;

however, they fall short of demonstrating that resting-state activity
plays a central role in maintaining normal brain function. It is
precisely this point on which the significance of the present case
rests. The key observation in this case is the association of sus-
pended normal development with suppression of BOLD fluctua-
tions and reversal of both abnormalities after treatment. The
implication is that ongoing, temporally coherent neuronal signal-
ing may play a role in maintaining the brain’s functional integrity.
It is well established that temporally coherent spontaneous

neuronal activity plays a critical role in shaping synaptic weights
during brain development (69, 73, 74). Moreover, it is known
that some of the mechanisms regulating synaptic strength in
relation to neuronal activity during development persist into
adulthood (75). Such results derive from studies currently clas-
sified under the heading of activity-dependent synaptic homeo-
stasis (76). Much of the synaptic homeostasis literature is based
on experiments conducted in vitro or in small animals and is
focused on the cellular and molecular mechanisms underlying
synaptic plasticity. This area of inquiry may seem far removed
from EE. However, our present findings suggest that disordered
activity-dependent synaptic homeostasis may well underlie the
pathophysiology of EE. Improved understanding of EE as a dis-
ease entity could aid the development of a suitable animal model
that can illuminate the molecular mechanisms that normally
maintain the brain’s development and functional integrity.
However, as far as we know, no such animal model exists, and
thus there is a need to identify more patients with EE to further
clarify the importance of spontaneous BOLD fluctuations and
their correlation with neurobiological development.

Limitations, Unresolved Issues, and Future Directions. Caution is
appropriate when interpreting the findings for any individual
patient. Several limitations of the present study can be identified,
as follows:

� Because of the history of mixed seizures, the patient was
maintained on antiepileptic drugs postoperatively. Antiepi-
leptic drugs can affect cognition (reviewed in ref. 77) and
cerebral glucose metabolism (78). However, the same anti-
epileptic drug regimen was maintained over the preopera-
tive and postoperative fcMRI acquisition period, and thus
this factor does not account for the patient’s clinical course.

� All fMRI images were acquired with the patient under pro-
pofol sedation, which is known to affect RSN topography
(79). However, a detailed analysis including comparable
neurosurgical epilepsy patients (SI Text) demonstrated that
sedation alone does not account for the present principal
findings.

� Our observations are essentially correlative. We report the
associations of suppressed coherent resting-state BOLD fluc-
tuations with seizures, developmental regression, and char-
acteristic EEG abnormalities (LGS). Critically, these as-
sociations were reversed, albeit incompletely, after successful
treatment. The FDG-PET literature suggests that preopera-
tively depressed CMRglu, had it been measured, also would
have been restored postoperatively. The patient’s postoper-
ative clinical improvement cannot be attributed to any of
these factors in isolation; rather, our data suggest that
RSN activity may play a heretofore underrecognized role
in maintaining the brain’s functional integrity.

� Nature provides very few opportunities to observe the be-
havioral and EEG correlates of reversibly suppressed rest-
ing-state BOLD fluctuations. In view of this, we intend to
create a prospective registry for imaging these children and
following them before and after intervention to study the
relationships among resting-state activity, behavior, and
development.
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Methods
Data Acquisition. Brain MRI (Siemens 3-T TRIO scanner) was performed 1 d
before and 1 d after the surgery with the patient on a constant antiepileptic
drug regimen. Resting-state BOLD fMRI was added to the clinical protocol
after signed informed consent was obtained from the patient’s parents in
accordance with institutional review board standards. Because of the
patient’s age and developmental level, all imaging was obtained under
propofol sedation (SI Text). Structural imaging included a high-resolution,
T1-weighted, magnetization-prepared gradient echo (MP-RAGE) scan and
a T2-weighted fast-spin echo scan. Functional data were acquired using
a gradient echo, echo-planar sequence sensitive to BOLD contrast (repetition
time, 2.07 s; echo time, 25 ms; flip angle, 90°; bandwidth, 2605 Hz; two runs
of 7 min each). Whole-brain coverage was obtained in 36 contiguous slices
(4 mm cubic voxels). Head motion was minimal in both the preoperative and
postoperative fMRI datasets.

Preprocessing of fMRI Data. The fMRI data were preprocessed as described
previously (50, 80). Preprocessing steps included compensation for asyn-
chronous slice acquisition and head motion within and across fMRI runs.
Intensity scaling (one multiplicative factor per fMRI run applied to all voxels
and all volumes) was used to obtain a whole-brain mode value of 1,000.
Registration of the functional data to Talairach atlas space (81) was com-
puted using the patient’s T1- and T2-weighted structural images and an
atlas-representative template prepared from MP-RAGE images acquired in
24 normal children and young adults; the template generation methodology

was described previously (82). Additional preparation of the fMRI data for
correlation analysis included temporal low-pass filtering retaining frequen-
cies below 0.1 Hz and spatial smoothing (6 mm FWHM Gaussian blur).
Spurious variance was reduced by regression of the six head motion param-
eters, the time series derived from ventricular and white matter regions, and
the signal averaged over the whole brain (80).

Correlation Analysis. Forty-six 10-mm-diameter spherical seed regions (ROIs; SI
Text) were centered on coordinates associated with task control (83), at-
tention (84), and default mode functionality (85), along with additional foci
in primary sensory and motor areas. BOLD time series were extracted from
each seed ROI. Correlation maps were computed using standard methods
(80). Obtained correlation coefficients were transformed using Fisher’s var-
iance-stabilizing z-transform. ROI pair covariances and correlations were
computed similarly. Independent component analysis was performed using
a modified fast independent component analysis (ICA) algorithm imple-
mented in MATLAB (86).
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